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ABSTRACT 

For homeomorphisms 

(z, w) ~ (z. e ~'~°, ~(z)w) 

(z, w E  S 1, ~ is irrational, ~ : S  1 -----*S 1) o f t h e t o r u s  S 1 × S  1 it is 

proved that T~ has countable Lebesgue spectrum in the orthocomplement 

of the eigenfunctions whenever ~ is absolutely continuous with nonzero 

topological degree and the derivative of ~ is of bounded variation. Some 

other cocycles with bounded variation are studied and generalizations of 

the above result to certain distal homeomorphisms on finite dimensional 

tort are presented. 
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I n t r o d u c t i o n  

In the last few years, problems concerning spectral multiplicity have become of 

a renewed interest. There have been presented new constructions of automor- 

phisms with given spectral multiplicity ([6], [15], [16], [17]). The history of the 

spectral multiplicity problem in ergodic theory till 1983 has been described in [15]. 

Since then, new results have appeared, especially around the Banach problem of 

finding an automorphism with simple Lebesgue spectrum. In 1984, Mathew and 

Nadkarni [11] constructed a family of automorphisms having Lebesgue compo- 

nent of multiplicity 2. A similar result was achieved in [12]. In [1] and [10], the 

authors constructed examples of automorphisms having Lebesgue component of 

arbitrary even multiplicities. 

Let Tz  = z .  e 2"ri~ be an irrational rotation of the circle S x = {z E C: [z[ = 

1}. In this note we take up the Lebesgue spectrum problem in the class of 

homeomorphisms of the torus S 1 × S 1 given by the extension 

(1) w) = (z .  e 

of T, where ~0: S 1 ~ S 1 is a smooth map. Such a ~o can be represented as 

(2 )  ~0(e 2" i ' )  = e 2'~i~(') • e 2 " i ' ' ' ,  

where ~: R ---* R is periodic of period 1 mad smooth. In this representation, 

m E Z is unique, while ~ is unique up to an additive integer constant. The 

number m is called the degree d(~o) of ~o. 

In [5], the authors have proved that if d(~0) = 0 and ~ is absolutely continuous 

then the maximal spectral type (m.s.t.) of T~ is singular. Here, we show that 

quite the opposite happens for nonzero degree and ~o sufficiently smooth. 

THEOREM 1: Suppose that ~ is absolutely continuous and (o' is of bounded 

wariation. If  m = d(~o) # O, then T~ has countable Lebesgue spectrum in the 

orthocomplement of the eigenfunctions of T. 

In [9] (see also [3], p.344), gushnirenko proved a similar result concerning 

diffeomorphisms of the form (1) under the assumption that ~' + 1 > 0 and ~ E 

C2(R). 

According to Theorem I and the mentioned result of [5], on the torus S I x S I 

there are no C2-diffeomorphisms of the form (1) with Lebesgue component of 

finite multiplicity. 
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We also discuss mixing properties of (i), where ~o is absolutely continuous of 

nonzero degree or, more generally, is piecewise absolutely continuous. In partic- 

ular, we prove that if ~ is absolutely continuous and has nonzero degree then in 

the orthocomplement of the eigenfunctions of T the automorphism (1) is mixing. 

In Section 4 we show that the results obtained for absolutely continuous cocy- 

des of nonzero degree are no longer true if we only assume bounded variation of 

the cocycle. This is done by a construction of a degree 1 continuous monotone 

cocycle which is a coboundary. The construction however requires a to have 

unbounded partial quotients. 

In the last section, we consider more general automorphisms on finite dimen- 

sional tori defined by 

(3) S ( e  2~rizx , e 2 ~ i x ' , . . . ,  e 2'riz' ) = (e 2~ i ( ' l+a) ,  e 2~ri(z'+d''azl+f°~(zl)), 

• . .  , e21ri(zq+dq,xzl+'"+dq,q-tzq-x+~q-1(zl'""z~-x))), 
where dkn • Z, dn,n-1 ~ 0 for each n = 2 , . . . ,  q. We generalize a result of 

Furstenberg [4] concerning strict ergodieity as wen as a result from [3], p. 344, 

about the Lebesgue spectrum of such automorphisms. 

i. Notation and facts from spectral theory 

We assume that the reader is familiar with the basic facts on the spectral theory 

of unitary operators (Appendix in [13] is of sufficient scope). 

Suppose that Tz = z. e 2'~i'~ is an irrational rotation. Denote 

H = z 2 ( s  ~, ,~), 

where A is Lebesgue measure. We will consider unitary operators U: H ~ H 

given by 

(4) (U f)(z) = F(z)f(Tz), 

where IFI = 1. For each f • H, we will denote by a! the spectral measure 

of f,  i.e. 

For the operator 

relation 

t 
by(n) = ]s t zndcrf(z) = (unf, f), n • Z. 

M: H ~ H defined by M r ( z )  = z f ( z )  the commutation 
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(5) U M  = e 2"i° . MU 

holds. We have the following classical 

LEMMA 1 ([13], Wiener Lemma): Suppose that I'Io C_ I'I is a closed M-invariant 

subspace of 111. Then, there exists a Bore] set B such that 

//o = {f e//: five=0}. 

The next five lemmas are well-known (see [8]), but we include the proofs for 

the reader's convenience. 

LEMMA 2: If  Ho is a closed subspace of H which is simultaneously M -  and 

U-invariant then H0 = {0} or H0 = 111. 

Proo£" By Wiener Lemma, 

H o = { f E H :  / [BC =0}.  

Take Xs E H0. Since UXs = F .  XT-t8 E Ho and IFI = 1, T - 1 B  C B, so by 

the ergodicity of T either A(B) = 0 or 1. | 

LEMMA 3: The m.s.t, oF U is e/ther discrete or continuous singular or Lebesgue. 

Proof: Suppose that H = Ho (~ H1 (~//2, where Ho (H1,H2 resp.) consists 

of those f E H whose spectral measure cry is discrete (continuous singular, 

absolutely continuous resp.). Notice that Hi is a closed U-invariant subspace 

of H. In view of (5), 

(UkM f, Mr) = ~"'k~'(MU~/, M/) = ~"'k~(U~ f, f). 

Hence, crMy ---- cry * ~e 2.'.. Consequently, each Hi is also M-invariant, so by 

Lemma 2 it has to be trivial. 

It remains to prove that if //2 -- H then the m.s.t, cry of U on t112 is 

Lebesgue. Notice that for each n E Z 

(6) crM-f = cry * 6e2-,-o << cry << A. 

Suppose there exists a Borel set A C_ S 1 such that cry(A) = 0 and A(A) > 0. 

In view of (6), 
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(7) ~1(~'i"~A) = 0 (. • z), 

so ai(U.eze2"i"~A) = 0. On the other hand, A(U.e ze2~i"aA) = 1 by the 

ergodicity of the irrational rotation, a contradiction. | 

LEMMA 4: / f  the m.s.t, of U is Lebesgue then the multiplicity function of U is 

uniform. 

Proof: Let H = ~9,=,Z(f,), where 

z(/.) = span{ui/. : i • z} 

Notice that in view of (5), 

and 

since 

and af, >> a f2 > > . . . .  

oo 

H = M H = ~ Z ( M f n )  
n = l  

aM f, >> aM f2 >> "" 

aM.,. = 6¢2.,. * ay.. Hence, by the uniqueness of the spectral types, we 

have af~ ..~ 6e2.,o • aye, j = 1, 2, . . . .  Therefore, all the nonzero spectral measures 

are equivalent to Lebesgue measure. | 

LEMMA 5: Suppose ~;hat f e H and ~-*~=-oo I ( U " f , f ) [  2 < +oo. Then  a I << A. 

Proof." Let g(z) = ~'~=_oo(Ukf, f ) z  -k in L2(S1,A). Now, the absolutely 

continuous measure dr(z) = g(z)dA(z) coincides with a! since for every n • Z 

w e  hD, v e  

f i ( n ) = f s ,  zng(z)dA(z) = 

II 

Denote 

F(")(z) = { 

oo 

~-~ (Ukf' f )  Is  zn-kdA(z) = (Unf '  f )  = of(n).  
k=-oo * 

F ( z ) F ( T z ) . . . . . F ( T " - l z )  if n > 0, 
1 if n=O,  
( F ( T " z ) . . . . . F ( T - l z ) )  -~ if n < 0. 
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COROLLARY 1: Suppose, for the operator U given by (4), that 

o o  

n c ~  

Then U 

F(-)(~)a~(~)l ~ < +oo. 

has Lebesgue spectrum of uniform multiplidty. 

Proof: Put f = 1 and notice that (8), by Lemma 5, gives rise to the conclusion 

that ~! << A. Then, apply Lemmas 3 and 4. | 

Now, let T~, be given by (1). Let us decompose 

o o  

(01 L~(s ~ × s~,~ ® ~) = ( ~  H("), 
n 

where 

H(") = {g: g(z,w) =/(z)w", / e L2(Sl,~)}. 

Observe that H (") is a closed UT~--invariant subspace of L2(S 1 × S1,A @ A), 

where UT~ (g) = g o T~. 

LEMMA 6: The operator UT~ : H(") ---* H(") is tmitarily equivalent to U (") : 

H , H, where (U(')f)(z) = V(z)"f(Tz) .  

Proof." We define V: H (n) , H by putting Vg = f,  where g(z, w) =- f (z)w".  

Then V is an isometry form H(") onto H and moreover 

(UT~g)(z, w) = f(Tz)(~(z)w)" = f (Tz)~(z)nw n, 

$ 0  

(VUT~g)(z) = f (Tz)~(z)"  = (U(")Vg)(z) 

and the result follows. | 

2. P r o o f  of  Theorem 1 

Let ~5: R ~ R be periodic of period 1 . Fix a E [0,1) 
{ ~ ( x ) + ~ ( x + a ) + . . . + ~ ( x + ( n - 1 ) a )  if n > 0 ,  

~(")(z) = 0 if n = 0, 
-(qS(x + nc~) + . . .  + ~(z + ( - a ) ) )  if n < O. 

and denote 
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If ~ is in addition absolutely continuous then we denote by ~': R ~ R a 

periodic function of period 1 which is a.e. the derivative of ~ (then 9? is the 

indefinite integral of ~'). 

The following lemma is similar to Lemma (4 .3 ) ,  due to van der Corput,  from 

[:ts], p.197. 

LEMMA 7: Let f: [0,1] , R be absolutely continuous with f(1)  - f(0)  • Z. 

Let f': [0, 1] , R be a.e. equal to the derivative of f .  Assume that the variation 
Vax(f') of f '  on [0, 11 is bounded and if(0) = / ' ( 1 ) .  Moreover, suppose that 
there exists a > o s u ~  that If(~)l  >- a for • • [0,1]. Then 

f ' Var(f') 
] e2"il(')dzl < 27ra 2 

Proof: By integrating by parts we obtain 

1 re2~il(*)ll 1 

~ l  e2"i'(') 1 1 1 = d(/,--(E)I _< z~var(?-;). 

V,~,-(f'~Var f '  

LEMMA (Basic Lemma): Suppose a • [0,1) is irrationM. Let ~ be absolutely 
continuous and periodic of period 1. Assume that the variation Var(~Y) of 

qS' on [0,11 is bounded. Then, for any m , g  • Z'x.{0} 

d~O 1 Val'(~') 
] e2"N(~ ' ( ' )+" 'O  dzl < In-----~ 

for Inl large enough. 

Proof." Fix 0 < e < 1/2. Since ~' is Riemann integrable on [0, 1], from the 

strict ergodicity of the irrational translation 

[-~n](~t)(rl)(x)- fol~t(t)dtl  < g  

holds for Inl >__ -0 uniformly in x fi [0,1]. Since ~ is periodic, f01 ~'( t)  dt = 0. 

Hence I(~')¢")(z)l < ~1=1 for an z • [0,1] and I"1 > n0. Therefore, for 

M > n0, we have 



80 A. IWANIK ET AL. Isr. J. Math. 

(10) 

We also have 

I(~')(")(~) + .ml > ( I .q -  ~)l-I. 

(11) Var(~') = Var(~'(z + ja ) ) ,  j 6 Z, 

(12) (~')(") = (~("))'. 

Put .f(x) = N(~(")(z) + nmx). In view of (12) and (10), we get If'(x)l >_ 
INl(l'q-~)l"l- By (n) ,  W ( f )  < I~V.lVar(~'). Uence, by Lemma 7, for I"1 > "0, 

] ~]o ~ e 2"~N(¢(")(')+"'') dz[ _< 

which completes the proof. | 

IN~lw(~') w(¢) 
2~(N(Iml-~)-) ~< I~----V- 

We intend to prove that (using the notation from Lemma 6) UT~,: H (N) 

H (N) has uniform Lebesgue spectrum whenever N 6 Z \{0}. In view of Lemma 6 

and Corollary 1, it is enough to prove that 

o o  

n~- - - - -oo  

Since ~0 is given by (2), all we need to show is that 

which holds true by Basic Lemma. Since N runs over an infinite set, UT¢ has 

countable Lebesgue spectrum in the orthocomplement of H (°) and the proof of 

Theorem 1 is complete. | 

We do not know what the values of the spectral multiplidty function of U (1) are 

in case of T~, considered in Theorem 1. The spectrum is of uniform multiplicity 

Im] if ~ is constant and d(~) = m ~ O. 

3. R e m a r k s  o n  a b s o l u t e l y  c o n t i n u o u s  c o c y c l e s  

Remark 1: In [5], the authors have proved that if T~, is given by (1) and ~o is 

absolutely continuous of nonzero topological degree then T~o is ergodic, in fact it 

is weakly mixing in the orthocomplement of the eigenfunctions of T. Using our 
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method, we can prove that T~o is even mixing in that orthocomplement. Indeed, 

since T has discrete spectrum, it is enough to show that 

(13) e2"iN(~(")(z)+"mZ)dz = O, 

for each N, m6Z\{O} and an arbitrary ~:R )R whichis l-periodic and 

absolutdy continuous. By integrating by parts, we have 

Since ~' 6 L*(S ~, A), applying the ergodic theorem (L*-convergence) to the 

rotation by e 2~i~ we obtain (13). | 

Remark 2: In the same paper [5] an isomorphism invariant S~o(T) for the 

automorphisms of the form (1) has been introduced. It is given by 

Ilaa]l--o, ¢eS J0 

It has been proved in [5] that ,q~o(T) < 1 whenever ~o is uniformly Lipschitz 

continuous and of nonzero topological degree. From Remark 1, much more fol- 

lows: the invariant is equal to zero (in fact, it is zero whenever the cocycle ~0 is 

absolutely continuous with a nonzero degree). | 

Remark 3: A function I: [0, 1) ~ R is said to be piecewise abso lu t e ly  

con t inuous  if there are 0 =  x0 < xl < . . .  < Xn < Zn+l = 1 such that  f 

is absolutely continuous on each interval [zi, xi+l) (in particular f (xi+l  - 0) 

exists), i = 0 , . . . ,  n. Notice that  if f is piecewise absolutely continuous then 

there exist g, h: [0,1) , R such that 

(14) Y = 9 - h, 

where g is absolutely continuous and h is a step function, with the discontinuity 

points z l , . . . , Z a ,  so h restricted to each interval [xi, zi+l) is constant. If 

f = gl - hi is another representation in which gl is absolutely continuous and 

hi a step function with the discontinuity points y l , . . .  ,ym, then for some c 6 R 
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we have g = gI + c, h = hi + c. We say that a piecewise absolutely continuous 

function f is essent ia l  if g (1 -0 ) -g (0 )  6 Z \ {0}. Pask in [14] has proved that if f 

is piecewise absolutely continuous, f :  f ( t )dt  = 0 and the derivative f '  is Riemann 

integrable with f :  f ' ( t)dt  # 0 then for each irrational a the corresponding skew 

product Tf: S* x R ~ S t x R,  Tl(e 2~iz,s) = (e 2~ri(z+~), f ( z )  + s) is ergodic 

(on R we consider the infinite Lebesgue measure). Notice that for each piecewise 

absolutely continuous function f its (a.e.) derivative is Lebesgue integrable and 

moreover 

~o ~ f ' ( t)dt  # 0 

whenever f is essential. Let f be essential and f = g - h be a representation 

(14) of f .  Then the integration by parts as in Remark 1 (with m replaced by 

g(l - O) - g(O)) yields 

(15) e2~i~("l(z) dx = O. 

Now, h is a step function so by a result of [5] it follows that  if a has unbounded 

partial quotients then 

(16) $e,.~h(T) = I. 

Putting (15) and (16) together, we get that there exists a sequence 

(q.), [Iq.a[I ~ 0, such that 

(17) e2"iI('")(Z) dx = O. 

Indeed, this is a consequence of the following two more general observations. 

Let (X,B,#)  be a probability space. Suppose that ( f , ) , ( 9 , )  are sequences of 

measurable functions whose values are of modulus one. Then 

(i) I f  f x  f . (z )d#(x)  , c, Icl = 1, then f .  , c in ~, 

since fx(1 - Re(c-xf.(z)))d#(z) - - ,  o and 0 <_ 1 - Re(c-*fn(x))  <_ 2. 

(ii) I f  j r  ___, c in #, ]c I = 1 and f x  g,,(x)d#(z) ~ 0 then fx A(z)g,~(z)d#(x) 
---*0 

since 

-< .-~ootim/x [/" - cld~, = O. 
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By the result of Pask, it follows that for certain piecewise absolutely continuous 

maps f the skew products T~, where ~0(e 2~iz) = e 2~i/(x), of the form (1) are 

ergodic. However, we can prove that in addition the transformations T~ are 

weakly mixing in the orthocomplement of the eigenfunctions of T whenever f 

is essential. Indeed, if 0 is an eigenvalue of T~ with an eigenfunction orthogonal 

to H (°), (see (9)) then, by [2], there are a measurable function ~: S t , S I 

and N 6 Z \{0} such that ~N = 0~b oT/~b. Hence, there exists a sequence (zk) 

of complex numbers of modulus 1 such that for each ~ > 0 

(18) lira A({z E $1: [(~N)(k)(z) -- zkl _> d) = o. 

But the function N.f is essential so (17) is still satisfied for it. This is a contra- 

diction to (18). 

We do not know whether for every essential f and every a with bounded partial 

quotients the skew product Te2-~l is weakly mixing in the orthocomplement of 

the space generated by the eigenfunctions of T. | 

4. Cocycles with bounded variation 

As indicated in Remark 1, absolutely continuous cocycles with nonzero degree 

ffive rise to ergodic extensions. In 1961, Furstenberg [4] proved the above asser- 

tion under the stronger assumption of the Lipschitz property of the cocycle. He 

noticed that his assumption could not be essentially weakened since the result 

is no longer true for continuous cocycles of nonzero degree with bounded varia- 

tion ([4], p.583). However, in a private conversation, Professor Furstenberg has 

recently communicated to us that no appropriate counterexample was ever pub- 

lished. This section will be devoted to constructing this kind of counterexample. 

We begin with some general remarks on circle cocycles. Let T: (X, B, p) 

(X, B, #) be an ergodic automorphism of a probability space. Let ~: X ~ S t 

be a cocycle. 

Definition I: A set Y C X of positive measure is called a fixing set for ~ if 

for each natural number n _> 1 

(19) ~(n)(z) = 1 whenever z, Tnz E IF, 

where ~(")(z) = ~(z). %o(Tx)..... ~(T"- lz) .  | 
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We say that a cocycle 

measurable function f:  X 

corresponding extension 

T~: (X x S1,B,~)  

is a c o b o u n d a r y  if cp(z) = y ( T z ) / f ( z )  for a 

J S 1. Notice that if ¢ is a coboundary then the 

, (X x S*,/~,/~), T ¢ ( z , z )  = (Tz,%o(z)z), 

where B is the product o '-algebra and/~ is the corresponding product measure, 

is not ergodic (the function F(z ,  z) = f ( z ) z  - ]  is T~-invariant).  Actually T¢ 

is ergodic iff for each k E Z \ {0} the cocyele ~;' is not a eoboundary ([2]). 

PROPOSITON h If  ~ has a f~n g set Y then %o is a coboundary. 

Proof: For an arbitrary z E X consider the set 

g(z) = {cp(n)(z): Tnz  E Y} .  

Since T is ergodic, g(z )  is nonempty: actually, under the action of T almost 

each point visits Y in6njtely many times. Now if T'Uz ,  T " ' z  6 Y, nl  < nz,  then 

T " 2 - ' U ( T " * z )  = T " 3 z  so in view of (19), 

cpC",)(z) = ~p("t)(z)~pC",-"*)(T",z) = ~(n*)(z). 

Therefore g can be viewed as an a.e. defined function from X into S x . It is 

measurable since for any B C S x 

oo 

g - l ( B )  = U T-kr n (q°(k))-'(B)" 
k=l 

Take x E X and let T " z  E Y for some n _> 2. Thus T " - I ( T x )  E IT, n -- 1 >_ 1, 

so g(Tz) = T(Tz)..... ~(Tn-lz) whence %o(z) = g(z)/g(Tz) and the result 

follows. | 

We wiU also need the foUowing 1emma. 

LEMMA 9: Let ~, l > 0. There ex/sts K(e, l) such that if K > K(s ,  I) and a < b 

with b - a = I then we can fred numbers 

satisfying 
j rl: l ,  

I"  + - < ( j  = 0 , 1 , . . . , g )  
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and 
K--1 

Z cj EZ. 
j=O 

Proof." If I < e the assertion easily follows by the continuity of summation 

whenever Kl > 1. In general, cut [a, b] into consecutive small intervals of equal 

length, use the same K for each, and concatenate the resulting ci's. | 

Below, we list some properties of continued fraction expansion (see e.g. 

Chap. X). Let a be an irrational number from [0,1) and 

1 
a =  1 

al + 
a 2 -~- . . .  

[71, 

be its continued fraction expansion. The positive integers an are called the 

pa r t i a l  q u o t i e n t s  of a. Put  

P0 = 0, P1 = 1, Pn+I = a.+IPn + Pn-I 

Qo = 1, Q1 = a l ,  Qn+: : an+lQn -}- Q,~-I. 

We have 
I Pn, 1 

Q.(Q.+~ + Q.)  < I~ - ~-:, < Q.Q.+I '  

Q~+~IIQ~[I ÷ Q~IIQn+~[I - -  1, 

where [[t[[ denotes the distance of a real number t from the set of integers. By 

( t )  we denote the fractional part of t. 

For the rest of this section we denote by T the irrational translation mod 1 

by a on [0, 1). Hence, from the continued fraction expansion of a we obtain, 

for each n, two Rokhlin towers ~n, ~n for T whose union is the whole interval 

[0, 1). For n even 

~ = ([0, (Q~a}),  T[0, (Q,a}) , . . . ,  T ( ' -+ 'Q-+Q"- ' ) - I [0 ,  {Qna})}, 

~n = {[{Qn+la}, 1), T[{Q,+la}, 1) , . . . ,  TCt"-l[{Qn+la}, 1)}. 

We will denote 

h = [0, {a2~+,Q2~a}), J~ = T°Q"[0, {Q2ka}), 
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s = 0 , 1 , . . . ,  a2k+l - 1. We have 

a21+l--1 

x.= U 
8=0 

and ~k = {Ik ,TIk , . . .  ,TQ'k- i lk}  is a Rokhlin tower. 

THEOREM 2: Ira  has unbounded partial quotients then there exists a continuous 

increasing function f : [0,11 , R ,  f (1)  - f(O) = 1, and a measurable ¢ : 

S x ~ S i such that 

= 9 

for a.a. z E [0,1). 

Proof'. Without loss of generality we may assume that the set {a2k+l : k > 1} 

is unbounded. Indeed, in passing from a to 1 - a the sequence (a , )  shifts by 

a single position to the left (if a~ > 1) or to the right (if al = 1) starting from 

n _> 3. If a function f is constructed for 1 - a then f o T works for a. 

Choose cj > 0 so that 

(20) B e1 < 1. 
j = l  

We will inductively define a sequence of continuous and increasing functions 

f j  : [0,1] ----* [0, 1], fj(O) = 0, f / (1)  = 1. Moreover, for each j _> 1 we will have 

I l f i + l  - f i l l  < 

The function f j  will depend on a choice of a certain subinterval Aj of Ikj of 

the form A i = J ~  U J ~  +1 U. . .  U J ~  +Kj -1 Denoting Aj,s = TsAj  and letting 

Q2~i --1 

Bj = U AJ's 
s=0 

we will have 

(21)  (Bi) < 

(here X denotes Lebesgue measure on [0,1)). If, for a fixed j ,  we cut [0,1) into 

the intervals Aj,s and the gaps between them, then fJ will be linear on each 

Aj,s and constant on each gap. If Cj = Aj,sl U Ai,s 2 U.. .  U Ai,s,i is the union of 
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(22)  

and ul with 

those intervals Aj,,  on which f j  is nonconstant, then we will have C1+ 1 C C 1 

and f1+1 = fJ off C1, so to build f1+1 we only change fJ on some of the 

intervals Aj,, .  In this induction procedure Lemma 9 will be repeatedly used to 

construct a fixing set for e 2"~il, where f = limj-~oo fj .  

STEP 1: Taking as parameters el, 1 we apply Lemma 9 to get a number K1. 

Then we find kl such that 
K1 

- - ~ 1  
a2kl-kl 

Define 

where 

1 2 
~ a 2 k l + l  < Ul ,~ Ul -k g l  - 1 < ~a2h+l .  
J 

Qak~ --1 

B , =  U T'(A1),  
8m0 

A 1  = 3~'~ U J ~ + l  U • • • U J~'~ + K ~ - I  . 

Notice that by (22), A(B1) = Qzh ]All < ~1, so (21) holds for j = 1. Finally, we 

define f l :  [0, 1] , [0,1] by putting 

0 for 0_<x_<~,  

/~(x)= ~_-~ for Z<x<7 ,  
1 for 7 _ < x _ < l ,  

where A1 = [8,7). 

In order to illustrate the induction step we next show how to define f2 • 

Since in Step 1 the number/(1 has been selected according to Lemma 9, STEP 2: 

we find 

with 

o =/~(/3) = co < e~ <... < e~:, = :1('y) = i 

K I - 1  

~ c k G Z  
k=O 

and satisfying the remaining statement of Lemma 9. Now, we apply Lemma 9 

with parameters ~2, ck+l - c k  to select K2, the same for each k = 0 , 1 , . . . ,  K1 - 1. 

Given K2 we choose k2 > kl in such a way that 

K~ 
- -  < e 2  
a2k2-kl 
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and u2 with 
1 2 
~a2k2+l < u2 < u2 + K2 - 1 < ] a 2 k ~ + l .  

We will define f2 using the parameters ck. More explicitly, notice that T(Ut+i)q2kt 

It2 is a left-hand subinterval of J~a t+i, i = 0 , . . . ,  K1 - 1, and obviously 

T (nt+i)Q2"l A2 C T O'~+OQ2h~ Ik2. 

Now we cut A1 into the subintervals T (ut+i)Q~'l A 2 and the gaps between them. 

To define f2 set the constant values c~ on the consecutive gaps (k = 0, 1 , . . . ,  K1) 

and complete f2 linearly on the remaining subintervals. It follows from Lemma 9 

that 

IIf2 - f l l l  < el .  

It is also easy to see that ~(B2) < e2. 

INDUCTION STEP: Assume f j  has already been defined, where fJ is linearly 

increasing on some of the intervals Aj,s (s = 0 ,1 , . . . ,  Q2ki - 1), say, 

Aj,sl,  Aj, s2,. . . , Aj,stj 

and has constant values summing up to an integer value on the gaps between 

these intervals. Moreover, each interval A£o, consists of Kj  translates of j o ,  

where Kj  is chosen according to Lemma 9 with parameters ej and Ifi(Aj,o,)l (i = 

1 ,2 , . . .  , t j ) .  Now, by the assertion of Lemma 9, letting Aj,s , = [/3i,7i) we find 

Yi(Z ) = c0,i < c ,i < . . -  < cKj,i = fj(7 ) 

with 
h'j-1 

E ck,i E Z 
k=0 

and satisfying the remaining statement of Lemma 9. 

Next apply Lemma 9 with parameters ~j+l and ck+l,i - ct,i (k = 0 , 1 , . . . ,  

K j - 1 ;  i = 1 , 2 , . . . , t i )  to select Kj+I. Given Kj+I find kj+l > kj such 

that 
Ki+l  

- -  < ~ j + l  
a2kj+t+l  

and u j+l with 

1 2 
~a2k~+~+l < Uj+l < uj+l  + Kj+I - 1 < ~a2k~+~+l. 
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Now define 
K~+t-1 

U J;/:: +'' 
i=O 

We clearly have ~(Bj+I) < ~j+l. The components T°Aj+I of Bj+I are subin- 

tervals of the corresponding translates of I~+ t. Cut each Aj,,~ into the intervals 

TaAj+I, where s = si +(uj + r)Q2ki, r = 0 , 1 , . . . , K j  - 1, of Bj+l that are 

contained in Aj,s~ and the Kj + 1 gaps between them. To define fj+l put 

the values c0,i, c l , i , . . . ,  cKj,i on the consecutive gaps (according to the natural 

ordering of [0,1)) and complete f j+l  linearly on the remaining intervals. Now, 

clearly 

I l f i + l  - f i l l  < 

and fj+l increases only on some of the intervals TaAj+l,  s = 0 , 1 , . . . ,  Q2k~+t - 1 ,  

with the values of constancy (assumed between these intervals) summing up to 

an integer. 

The description of the induction step completes the definition of f = lim fi .  

Now, we proceed to the second part of the proof to show e 2~il is a coboundary. 

Denote 
oo 

Y=IO, 1) \  U B i .  
j----1 

It remains to prove that Y is a fixing set for e 2~il. Let x, TNx • Y. In view of 

(21),(20) and Proposition 1, all we have to show is that 

(23) f(x) + f(Tx) +.. .  + f(TN-lz) • Z. 

First note that if Tz, T2z,... ,TN-lz • Y then f (x) , f(Tz), . . .  , f(TN-lz) • 
{0, 1} in which case we are done. Therefore we may assume Tnz is not in 

Y for some 0 < n < N and let n be minimal with this property. Now 

.f(x),f(Tx),... , f(Tn-lx) • {0,1} and there exists j >__ 1 such that  Tnz • Bj. 
Since T n - l x  is not in Bj, which is a Rokhlin tower with base Ai, we have 

Tnx • A i. As B i can also be viewed as a Rokhlin tower with base d~'] and 

height Q2kjKj, we must have 

We are going to prove 

(24) 

Tnx E Jk~]. 

f(Tnz) + f (Tn+lz )  + . . .  + f(T~+Q2h~ K~-lr ) E Z. 
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By the inductive construction above, the function f j  is constant on some of 

the components TaAj of Bj  and increases linearly on the other components 

Aj,~,  A j , ,2, . . .  , Ai,s, j . Moreover, f = f j  on the components of constancy, and 

the values assumed on these components sum up to an integer Mj (note that 

these are all the constant values assumed by f j) .  Now, (24) is equal to the number 

M j K j  plus those summands f ( T ' z )  for which T ' x  • Aj , ,  1 U Aj,~, U. . . U Aj, , i ,  

so to prove (24) it remains to show that these summands add up to an integer. 

First, we observe that Tnx is not in Bj+I. Indeed, Tax cannot be in A/+I since 

Aj+I C I~j+t C Jg~ and Jgj NAj  = ¢. On the other hand, if T " x  • Bj+1 \ A/+~ 

then T " - l x  • Bj+I so T'~-lx would not belong to Y, a contradiction. 

Now, split j~i  into three consecutive subintervals A j,1 Aj,2 Aj3 with Aj2 = 

Tq2h~ u# Aj+I C Bj+~. Note that Tnz  • A} t.J A~ and consequently f (T"+tz )  = 

fj+~ (Tn+Zx) for 1 = rQ2k~ + si (r = O, 1 , . . . ,  K j  - 1, i = 1, 2 , . . . ,  t j). We consider 

t w o  c a s e s  

CASE 1: Tnx E A}. Now, for each i = 1 , 2 , . . . , t j  

T"+°~z E T ~ A }  C Aj,,~ 

so the sum of those f (TSx)  in (24) for which Tsz  E Aj,s, is equal to 

Co,i "1- Cl,i "~ " " " "~ C K j - 1 , i  E Z .  

CASE 2: T n z  E AJ. We have 

Ts~ A3 Tn+°~x E - - j  C Aj,~, 

so the sum of those / (TSx)  in (24) for which Tsx E AS,s , is equal to 

(25) cl,i + c2,i + " "  + CKj,i. 

There exists a permutation a of {1,2 , . . .  , t j )  such that the disjoint intervals 

A£s.O), A£s.(2 ) , ' ' "  , A£s.Oi) 

follow the natural ordering of [0,1). Note that c0,~(1) = 0, cKj,~(tD = 1, and 

CKi,~(0 = c0,~(i+l) for i = 1, 2 , . . . ,  tj  -- 1. By adding up the partial sums (25) 
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corresponding to i = 1 ,2 , . . .  , t j  we obtain 

t~ Ki 

i=1 k=l 
= ~ ~ c~,~(/) 

i=1 k=l 
tj-1 K i Ki--I 

= Co,a(1)"~- ~ E Ck'a(i) "}" Z Ck'a(tJ ) "~ CKj'a(tJ) 
i=1 k=l k=l 

t~ Kj-1 

= Z ~ Ck,~'(i) + I E Z "  
i=1 k=O 

Thus far we have proved (24), which also yields 

f (z)  + f (Tz )  + . . .  + f(Tn+Q2'J ~:j-lz) e Z. 

Observe that  if we denote z l  = T"+Ch~J tq z and 371 = N - (n + Q2kj Kj) then 

1 < N1 < N and TN~xl E Y so the remaining part  of (23) is equal to 

f ( x l )  -[- f (Tx l )  + " "  + f(TNx-lxl) .  

Now if xl E Y, we may repeat the same argument for xl,N1 in place of x , N  

to prove that  the last sum is an integer; we will be done after a finite number of 

steps. 

To complete the proof we show xl E Y. Since Ik i is disjoint with B1 U B2 U 

• .. O Bi_1 and xl E Ik  i , the point zx cannot belong to B1 t_J B2 t.J . . .  t2 Bi_1. 

Suppose Xl E Bj+r  for some r > 1. Since Aj+r N B i = 0 and clearly xl is not 

in Aj+~ , we have T-kx l  E Bi+,- for all k = 0 , 1 , . . . , p ,  where p is a number 

greater than Q2kj Ki.  In particular, 

T-(Q2kJKi+l)Xl = T" - l x  E Bj+r 

whence T " - l x  ~ IT, a contradiction. Since obviously xl does not belong to Bj  

we must have xl E Y, which ends the proof of the theorem. | 

5. Some generalization 

Let T: (X, B, p) , (X, B, p) be an ergodic automorphism of a standard Borel 

space. Fix a cocycle ~: X ~ S x . Assume also that a measurable function 

g: X × R * R is periodic of period 1 and absolutely continuous as a function 
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on R for all z E X. Let g'(z, .) be a periodic function of period 1 which is a.e. 

equal to the derivative of g(z, .). Moreover, assume that 

g' e L'(X × [0,11). 

For a fixed r E Z \ {0}  put 

¢ ( z ,  e 2"i°) = e 2"i(°(,'')+~°), 

where s E [0,1). Denote by ~ the product measure on X x S 1 x S 1. 

For an automorphism v: (Y,C,v) * (Y,C,v) and a function u: Y 

set 

Sn(U(y) ,  T) = U(y) 3 L ' ' "  3 t- U(Tn-- ly) ,  

while for ~: Y * C we put 

~ R w e  

n,(~(y) ,~)=~(~). . . . .~(~"-l~) .  

Under the above assumptions we have the following result. 

THEOREM 3: The automorphism (T~)¢: X × S 1 × S 1 ~ X × S 1 × S 1 detlned 

by 
(T~)~(x, ~2.~°, ~2..) = (Tx, ~(~)~2.~., ¢(~, ~2.~°)~..) 

is mixing on the orthocomplement 7"( of the functions depending only on the 
first two coordinates in L2(/~). 

Proof." There exists a measurable function f :  X * R such that  ~(z)  = 

e 2~/I('). Let TI: X x R ~ X x R be defined by TI(z , s) = (Tz, f(x)  + s). We 

then have 

II=(¢(x, e2~i°), T~) = n , ( e  2"i('(' '°)+r°), T~) = e 2'~is"(a(''°)+r°'rD 

n - - I  = e2~is, (0(z,s),TDe2,~ir-se2~ir ~']~i=1 Si (I(z),79. 

Let 

G(z, w, z) = F(z)wMz N, 

where F is bounded, IFI < c ,  M E Z, N E Z "-{0}. Denote 

v, = f x  ~* fs ,  a(((T~)~)"(x,w,z))a(z,w,z)dft(z)d)~(w)d)~(z). 
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Since the functions G form a linearly dense set of functions in 7"/, all we need 

to show is that lim,,-.oo m, = 0. We have 

v. = fx fs* ~* G(T"z,H.(~o(z),T)w,H.(¢(z,w),T~.)z)G(z,w,z) 
dr(x) dA(w) dA(z) 

= Ix fs* F(Tnx)F(x)(H"(~°(z)'T))M(IIn(¢(z'w)'T~*))N dp(z)dA(w) 

= Ix fo 'F(T"x)F(z)(H"(~o(z)'T))M(II"(¢(x'e2'ri')'T~'))N dp(x)ds 

=/xF(T.x)F(z)(H.(go(x), T))M e21rirN ~j=: $~ (f(z),T) 

x --(/o*e2'atcS"(a("°)'T')e 2'my"° ds) dr(z). 

By integrating by parts, we obtain that 

I" e2*riNrns 
_ f72 l I [ ~ e 2 ~ r i N S . ( ~ ( z , m ) , T s ) l  1 

Iv"l < ~ Jx't2rciNrn J0 

fO e 21riNrns - 2~riNr'-----~ e2"iNS" (g(z")'TD2riNS"(g'(x' s), TI) dsl dtJ(z) 
= C2 1 

C2 1 

where h(~, .  '"~') = a ' (x , ' ) ,  (~ • X , .  • R). Since g'(~,.) • LI(X × [0, 1]), 

/x  foa h(x, ez"'°)dsd.(x) = /x(g(z, 1) - g(x,O))d.(z) = O, 

so fx f :  I-~S"(h(x, e2'~i°),T¢)[dsdp(x) , 0  by the ergodicity of T¢, whence 

v. ---~ O. I 

Remark 4: It follows from Theorem 3 that the automorphism (T¢),~ is ergodic. 

Hence, we generalize a result from [4] concerning the strict ergodicity of certain 

homeomorphisms of the form (T¢)¢ because the uniform Lipschitz condition 

assumed there guarantees that the derivatives are bounded a.e., thus in L 1. By 

another statement from [4] (Thin.2.1) the transformations (3) are strictly ergodic 

whenever each ~j satisfies uniform Lipschitz condition in xj. Theorem 3 says 

more, namely 
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COROLLARY 2: Let S be given by (3). //'for each j = 1 , . . . ,  q - 1 the function 

~ i ( z l , . . . ,  zj-1,  ") is absolutely continuous ~ t h  the (a.e.) derivative in L ~ then 

S is mixing on the orthocomplement in L2(S 1 x ...  x S x, ), ® . . .  ® A) of the 

functions depending on the first coordinate. 

Proof'. We apply inductively Theorem 3 to the transformations 

(...  where 

Tz = e2~i~ z, ~i(e2~i", . . . , e 2~i~ ) 

= e 2 1 r i ( z i + d i , l z l + . . . + d i , i _ l z i _ l + ~ i _ l ( z l  ..... z i _ l ) )  

j = 1 , . . . , q -  1. | 

Using the method introduced in the proof of Basic Lemma we easily extend 

the result obtained in Theorem 1 to the following. 

THEOREM 4: Under the assumptions of Theorem 3 if  in addition the functions 

g(z, .) have derivatives of bounded variation (uniformly in z)  then ( T~,)~, has ab- 

solutely continuous spectrum in the orthocomplement of the functions depending 

on the//rst two coordinates. 

Proof: By the proof of Theorem 3 and Lemma 5 all we need is show that 

This follows as in Remark 1. | 

Consequently, we obtain the following strenghtening of a result from [3], p. 

344. 

COROLLARY 3: If  S i s  given by (3) and the functions # j ( x l , . . .  , $j-1, ") have 

derivatives of bounded variation (uniforrrdy in x l , . . .  , x j - l  ) then S has count- 

able Lebesgue spectrum in the orthocomplement of the eigenfunctions for the 

irrational rotation. 

Proof: From Theorem 4 it follows that S has absolutely continuous spectrum in 

the orthocomplement of the eigenfunctions of T. But as T~,, has uniform infinite 

Lebesgue spectrum in that orthocomplement, the same holds for S. II 

Added in June 1992: Independently of this paper, G.H. Choe has proved Theo- 

rem 1 assuming that the cocycle ~ belongs to C2(R). 
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